Freeradius set up help
Horchem Gary
ghorchem at gary-springfield-mo.net
Mon Nov 9 23:53:52 CET 2009
I'm still having trouble here is my sites-available default file
"Authorization. First preprocess (hints and huntgroups files),
# then realms, and finally look in the "users" file.
#
# The order of the realm modules will determine the order that
# we try to find a matching realm.
#
# Make *sure* that 'preprocess' comes before any realm if you
# need to setup hints for the remote radius server
authorize {
#
# The preprocess module takes care of sanitizing some bizarre
# attributes in the request, and turning them into attributes
# which are more standard.
#
# It takes care of processing the 'raddb/hints' and the
# 'raddb/huntgroups' files.
#
# It also adds the %{Client-IP-Address} attribute to the request.
preprocess
#
# If you want to have a log of authentication requests,
# un-comment the following line, and the 'detail auth_log'
# section, above.
auth_log
#
# The chap module will set 'Auth-Type := CHAP' if we are
# handling a CHAP request and Auth-Type has not already been set
chap
#
# If the users are logging in with an MS-CHAP-Challenge
# attribute for authentication, the mschap module will find
# the MS-CHAP-Challenge attribute, and add 'Auth-Type := MS-CHAP'
# to the request, which will cause the server to then use
# the mschap module for authentication.
mschap
#
# If you have a Cisco SIP server authenticating against
# FreeRADIUS, uncomment the following line, and the 'digest'
# line in the 'authenticate' section.
# digest
#
# The WiMAX specification says that the Calling-Station-Id
# is 6 octets of the MAC. This definition conflicts with
# RFC 3580, and all common RADIUS practices. Un-commenting
# the "wimax" module here means that it will fix the
# Calling-Station-Id attribute to the normal format as
# specified in RFC 3580 Section 3.21
# wimax
#
# Look for IPASS style 'realm/', and if not found, look for
# '@realm', and decide whether or not to proxy, based on
# that.
# IPASS
#
# If you are using multiple kinds of realms, you probably
# want to set "ignore_null = yes" for all of them.
# Otherwise, when the first style of realm doesn't match,
# the other styles won't be checked.
#
# suffix
# ntdomain
#
# This module takes care of EAP-MD5, EAP-TLS, and EAP-LEAP
# authentication.
#
# It also sets the EAP-Type attribute in the request
# attribute list to the EAP type from the packet.
#
# As of 2.0, the EAP module returns "ok" in the authorize stage
# for TTLS and PEAP. In 1.x, it never returned "ok" here, so
# this change is compatible with older configurations.
#
# The example below uses module failover to avoid querying all
# of the following modules if the EAP module returns "ok".
# Therefore, your LDAP and/or SQL servers will not be queried
# for the many packets that go back and forth to set up TTLS
# or PEAP. The load on those servers will therefore be reduced.
#
eap {
ok = return
}
#
# Pull crypt'd passwords from /etc/passwd or /etc/shadow,
# using the system API's to get the password. If you want
# to read /etc/passwd or /etc/shadow directly, see the
# passwd module in radiusd.conf.
#
unix
#
# Read the 'users' file
files
#
# Look in an SQL database. The schema of the database
# is meant to mirror the "users" file.
#
# See "Authorization Queries" in sql.conf
# sql
#
# If you are using /etc/smbpasswd, and are also doing
# mschap authentication, the un-comment this line, and
# configure the 'etc_smbpasswd' module, above.
# etc_smbpasswd
#
# The ldap module will set Auth-Type to LDAP if it has not
# already been set
ldap
#
# Enforce daily limits on time spent logged in.
# daily
#
# Use the checkval module
# checkval
expiration
logintime
#
# If no other module has claimed responsibility for
# authentication, then try to use PAP. This allows the
# other modules listed above to add a "known good" password
# to the request, and to do nothing else. The PAP module
# will then see that password, and use it to do PAP
# authentication.
#
# This module should be listed last, so that the other modules
# get a chance to set Auth-Type for themselves.
#
pap
#
# If "status_server = yes", then Status-Server messages are passed
# through the following section, and ONLY the following section.
# This permits you to do DB queries, for example. If the modules
# listed here return "fail", then NO response is sent.
#
# Autz-Type Status-Server {
#
# }
}
# Authentication.
#
#
# This section lists which modules are available for authentication.
# Note that it does NOT mean 'try each module in order'. It means
# that a module from the 'authorize' section adds a configuration
# attribute 'Auth-Type := FOO'. That authentication type is then
# used to pick the apropriate module from the list below.
#
# In general, you SHOULD NOT set the Auth-Type attribute. The server
# will figure it out on its own, and will do the right thing. The
# most common side effect of erroneously setting the Auth-Type
# attribute is that one authentication method will work, but the
# others will not.
#
# The common reasons to set the Auth-Type attribute by hand
# is to either forcibly reject the user (Auth-Type := Reject),
# or to or forcibly accept the user (Auth-Type := Accept).
#
# Note that Auth-Type := Accept will NOT work with EAP.
#
# Please do not put "unlang" configurations into the "authenticate"
# section. Put them in the "post-auth" section instead. That's what
# the post-auth section is for.
#
authenticate {
#
# PAP authentication, when a back-end database listed
# in the 'authorize' section supplies a password. The
# password can be clear-text, or encrypted.
Auth-Type PAP {
pap
}
#
# Most people want CHAP authentication
# A back-end database listed in the 'authorize' section
# MUST supply a CLEAR TEXT password. Encrypted passwords
# won't work.
Auth-Type CHAP {
chap
}
#
# MSCHAP authentication.
Auth-Type MS-CHAP {
mschap
}
#
# If you have a Cisco SIP server authenticating against
# FreeRADIUS, uncomment the following line, and the 'digest'
# line in the 'authorize' section.
# digest
#
# Pluggable Authentication Modules.
# pam
#
# See 'man getpwent' for information on how the 'unix'
# module checks the users password. Note that packets
# containing CHAP-Password attributes CANNOT be authenticated
# against /etc/passwd! See the FAQ for details.
#
unix
# Uncomment it if you want to use ldap for authentication
#
# Note that this means "check plain-text password against
# the ldap database", which means that EAP won't work,
# as it does not supply a plain-text password.
Auth-Type LDAP {
ldap
}
#
# Allow EAP authentication.
eap
}
#
# Pre-accounting. Decide which accounting type to use.
#
preacct {
preprocess
#
# Ensure that we have a semi-unique identifier for every
# request, and many NAS boxes are broken.
acct_unique
#
# Look for IPASS-style 'realm/', and if not found, look for
# '@realm', and decide whether or not to proxy, based on
# that.
#
# Accounting requests are generally proxied to the same
# home server as authentication requests.
# IPASS
# suffix
# ntdomain
#
# Read the 'acct_users' file
files
}
#
# Accounting. Log the accounting data.
#
accounting {
#
# Create a 'detail'ed log of the packets.
# Note that accounting requests which are proxied
# are also logged in the detail file.
detail
daily
# Update the wtmp file
#
# If you don't use "radlast", you can delete this line.
unix
#
# For Simultaneous-Use tracking.
#
# Due to packet losses in the network, the data here
# may be incorrect. There is little we can do about it.
radutmp
# sradutmp
# Return an address to the IP Pool when we see a stop record.
# main_pool
#
# Log traffic to an SQL database.
#
# See "Accounting queries" in sql.conf
# sql
#
# Instead of sending the query to the SQL server,
# write it into a log file.
#
# sql_log
# Cisco VoIP specific bulk accounting
# pgsql-voip
# Filter attributes from the accounting response.
attr_filter.accounting_response
#
# See "Autz-Type Status-Server" for how this works.
#
# Acct-Type Status-Server {
#
# }
}
# Session database, used for checking Simultaneous-Use. Either the radutmp
# or rlm_sql module can handle this.
# The rlm_sql module is *much* faster
session {
radutmp
#
# See "Simultaneous Use Checking Queries" in sql.conf
# sql
}
# Post-Authentication
# Once we KNOW that the user has been authenticated, there are
# additional steps we can take.
post-auth {
# Get an address from the IP Pool.
# main_pool
#
# If you want to have a log of authentication replies,
# un-comment the following line, and the 'detail reply_log'
# section, above.
reply_log
#
# After authenticating the user, do another SQL query.
#
# See "Authentication Logging Queries" in sql.conf
# sql
#
# Instead of sending the query to the SQL server,
# write it into a log file.
#
# sql_log
#
# Un-comment the following if you have set
# 'edir_account_policy_check = yes' in the ldap module sub-section of
# the 'modules' section.
#
ldap
exec
#
# Calculate the various WiMAX keys. In order for this to work,
# you will need to define the WiMAX NAI, usually via
#
# update request {
# WiMAX-MN-NAI = "%{User-Name}"
# }
#
# If you want various keys to be calculated, you will need to
# update the reply with "template" values. The module will see
# this, and replace the template values with the correct ones
# taken from the cryptographic calculations. e.g.
#
# update reply {
# WiMAX-FA-RK-Key = 0x00
# WiMAX-MSK = "%{EAP-MSK}"
# }
#
# You may want to delete the MS-MPPE-*-Keys from the reply,
# as some WiMAX clients behave badly when those attributes
# are included. See "raddb/modules/wimax", configuration
# entry "delete_mppe_keys" for more information.
#
# wimax
# If the WiMAX module did it's work, you may want to do more
# things here, like delete the MS-MPPE-*-Key attributes.
#
# if (updated) {
# update reply {
# MS-MPPE-Recv-Key !* 0x00
# MS-MPPE-Send-Key !* 0x00
# }
# }
#
# Access-Reject packets are sent through the REJECT sub-section of the
# post-auth section.
#
# Add the ldap module name (or instance) if you have set
# 'edir_account_policy_check = yes' in the ldap module configuration
#
Post-Auth-Type REJECT {
ldap
}
}
#
# When the server decides to proxy a request to a home server,
# the proxied request is first passed through the pre-proxy
# stage. This stage can re-write the request, or decide to
# cancel the proxy.
#
# Only a few modules currently have this method.
#
pre-proxy {
# attr_rewrite
# Uncomment the following line if you want to change attributes
# as defined in the preproxy_users file.
# files
# Uncomment the following line if you want to filter requests
# sent to remote servers based on the rules defined in the
# 'attrs.pre-proxy' file.
# attr_filter.pre-proxy
# If you want to have a log of packets proxied to a home
# server, un-comment the following line, and the
# 'detail pre_proxy_log' section, above.
# pre_proxy_log
}
#
# When the server receives a reply to a request it proxied
# to a home server, the request may be massaged here, in the
# post-proxy stage.
#
post-proxy {
# If you want to have a log of replies from a home server,
# un-comment the following line, and the 'detail post_proxy_log'
# section, above.
# post_proxy_log
# attr_rewrite
# Uncomment the following line if you want to filter replies from
# remote proxies based on the rules defined in the 'attrs' file.
# attr_filter.post-proxy
#
# If you are proxying LEAP, you MUST configure the EAP
# module, and you MUST list it here, in the post-proxy
# stage.
#
# You MUST also use the 'nostrip' option in the 'realm'
# configuration. Otherwise, the User-Name attribute
# in the proxied request will not match the user name
# hidden inside of the EAP packet, and the end server will
# reject the EAP request.
#
eap
#
# If the server tries to proxy a request and fails, then the
# request is processed through the modules in this section.
#
# The main use of this section is to permit robust proxying
# of accounting packets. The server can be configured to
# proxy accounting packets as part of normal processing.
# Then, if the home server goes down, accounting packets can
# be logged to a local "detail" file, for processing with
# radrelay. When the home server comes back up, radrelay
# will read the detail file, and send the packets to the
# home server.
#
# With this configuration, the server always responds to
# Accounting-Requests from the NAS, but only writes
# accounting packets to disk if the home server is down.
#
# Post-Proxy-Type Fail {
# detail
# }
}" and my inner-tunnel file
"server inner-tunnel {
#
# Un-comment the next section to perform test on the inner tunnel
# without needing an outer tunnel session. The tests will not be
# exactly the same as when TTLS or PEAP are used, but they will
# be close enough for many tests.
#
#listen {
# ipaddr = 127.0.0.1
# port = 18120
# type = auth
#}
# Authorization. First preprocess (hints and huntgroups files),
# then realms, and finally look in the "users" file.
#
# The order of the realm modules will determine the order that
# we try to find a matching realm.
#
# Make *sure* that 'preprocess' comes before any realm if you
# need to setup hints for the remote radius server
authorize {
#
# The chap module will set 'Auth-Type := CHAP' if we are
# handling a CHAP request and Auth-Type has not already been set
chap
#
# If the users are logging in with an MS-CHAP-Challenge
# attribute for authentication, the mschap module will find
# the MS-CHAP-Challenge attribute, and add 'Auth-Type := MS-CHAP'
# to the request, which will cause the server to then use
# the mschap module for authentication.
mschap
#
# Pull crypt'd passwords from /etc/passwd or /etc/shadow,
# using the system API's to get the password. If you want
# to read /etc/passwd or /etc/shadow directly, see the
# passwd module, above.
#
unix
#
# Look for IPASS style 'realm/', and if not found, look for
# '@realm', and decide whether or not to proxy, based on
# that.
# IPASS
#
# If you are using multiple kinds of realms, you probably
# want to set "ignore_null = yes" for all of them.
# Otherwise, when the first style of realm doesn't match,
# the other styles won't be checked.
#
# Note that proxying the inner tunnel authentication means
# that the user MAY use one identity in the outer session
# (e.g. "anonymous", and a different one here
# (e.g. "user at example.com"). The inner session will then be
# proxied elsewhere for authentication. If you are not
# careful, this means that the user can cause you to forward
# the authentication to another RADIUS server, and have the
# accounting logs *not* sent to the other server. This makes
# it difficult to bill people for their network activity.
#
# suffix
# ntdomain
#
# The "suffix" module takes care of stripping the domain
# (e.g. "@example.com") from the User-Name attribute, and the
# next few lines ensure that the request is not proxied.
#
# If you want the inner tunnel request to be proxied, delete
# the next few lines.
#
update control {
Proxy-To-Realm := LOCAL
}
#
# This module takes care of EAP-MSCHAPv2 authentication.
#
# It also sets the EAP-Type attribute in the request
# attribute list to the EAP type from the packet.
#
# The example below uses module failover to avoid querying all
# of the following modules if the EAP module returns "ok".
# Therefore, your LDAP and/or SQL servers will not be queried
# for the many packets that go back and forth to set up TTLS
# or PEAP. The load on those servers will therefore be reduced.
#
eap {
ok = return
}
#
# Read the 'users' file
files
#
# Look in an SQL database. The schema of the database
# is meant to mirror the "users" file.
#
# See "Authorization Queries" in sql.conf
# sql
#
# If you are using /etc/smbpasswd, and are also doing
# mschap authentication, the un-comment this line, and
# configure the 'etc_smbpasswd' module, above.
# etc_smbpasswd
#
# The ldap module will set Auth-Type to LDAP if it has not
# already been set
ldap
#
# Enforce daily limits on time spent logged in.
# daily
#
# Use the checkval module
# checkval
expiration
logintime
#
# If no other module has claimed responsibility for
# authentication, then try to use PAP. This allows the
# other modules listed above to add a "known good" password
# to the request, and to do nothing else. The PAP module
# will then see that password, and use it to do PAP
# authentication.
#
# This module should be listed last, so that the other modules
# get a chance to set Auth-Type for themselves.
#
pap
}
# Authentication.
#
#
# This section lists which modules are available for authentication.
# Note that it does NOT mean 'try each module in order'. It means
# that a module from the 'authorize' section adds a configuration
# attribute 'Auth-Type := FOO'. That authentication type is then
# used to pick the apropriate module from the list below.
#
# In general, you SHOULD NOT set the Auth-Type attribute. The server
# will figure it out on its own, and will do the right thing. The
# most common side effect of erroneously setting the Auth-Type
# attribute is that one authentication method will work, but the
# others will not.
#
# The common reasons to set the Auth-Type attribute by hand
# is to either forcibly reject the user, or forcibly accept him.
#
authenticate {
#
# PAP authentication, when a back-end database listed
# in the 'authorize' section supplies a password. The
# password can be clear-text, or encrypted.
Auth-Type PAP {
pap
}
#
# Most people want CHAP authentication
# A back-end database listed in the 'authorize' section
# MUST supply a CLEAR TEXT password. Encrypted passwords
# won't work.
Auth-Type CHAP {
chap
}
#
# MSCHAP authentication.
Auth-Type MS-CHAP {
mschap
}
#
# Pluggable Authentication Modules.
# pam
#
# See 'man getpwent' for information on how the 'unix'
# module checks the users password. Note that packets
# containing CHAP-Password attributes CANNOT be authenticated
# against /etc/passwd! See the FAQ for details.
#
unix
# Uncomment it if you want to use ldap for authentication
#
# Note that this means "check plain-text password against
# the ldap database", which means that EAP won't work,
# as it does not supply a plain-text password.
Auth-Type LDAP {
ldap
}
#
# Allow EAP authentication.
eap
}
######################################################################
#
# There are no accounting requests inside of EAP-TTLS or PEAP
# tunnels.
#
######################################################################
# Session database, used for checking Simultaneous-Use. Either the radutmp
# or rlm_sql module can handle this.
# The rlm_sql module is *much* faster
session {
radutmp
#
# See "Simultaneous Use Checking Queries" in sql.conf
# sql
}
# Post-Authentication
# Once we KNOW that the user has been authenticated, there are
# additional steps we can take.
post-auth {
# Note that we do NOT assign IP addresses here.
# If you try to assign IP addresses for EAP authentication types,
# it WILL NOT WORK. You MUST use DHCP.
#
# If you want to have a log of authentication replies,
# un-comment the following line, and the 'detail reply_log'
# section, above.
reply_log
#
# After authenticating the user, do another SQL query.
#
# See "Authentication Logging Queries" in sql.conf
# sql
#
# Instead of sending the query to the SQL server,
# write it into a log file.
#
# sql_log
#
# Un-comment the following if you have set
# 'edir_account_policy_check = yes' in the ldap module sub-section of
# the 'modules' section.
#
ldap
#
# Access-Reject packets are sent through the REJECT sub-section of the
# post-auth section.
#
# Add the ldap module name (or instance) if you have set
# 'edir_account_policy_check = yes' in the ldap module configuration
#
Post-Auth-Type REJECT {
ldap
}
#
# The example policy below updates the outer tunnel reply
# (usually Access-Accept) with the User-Name from the inner
# tunnel User-Name. Since this section is processed in the
# context of the inner tunnel, "request" here means "inner
# tunnel request", and "outer.reply" means "outer tunnel
# reply attributes".
#
# This example is most useful when the outer session contains
# a User-Name of "anonymous at ....", or a MAC address. If it
# is enabled, the NAS SHOULD use the inner tunnel User-Name
# in subsequent accounting packets. This makes it easier to
# track user sessions, as they will all be based on the real
# name, and not on "anonymous".
#
# The problem with doing this is that it ALSO exposes the
# real user name to any intermediate proxies. People use
# "anonymous" identifiers outside of the tunnel for a very
# good reason: it gives them more privacy. Setting the reply
# to contain the real user name removes ALL privacy from
# their session.
#
# If you want privacy to remain, see the
# Chargeable-User-Identity attribute from RFC 4372. In order
# to use that attribute, you will have to allocate a
# per-session identifier for the user, and store it in a
# long-term database (e.g. SQL). You should also use that
# attribute INSTEAD of the configuration below.
#
#update outer.reply {
# User-Name = "%{request:User-Name}"
#}
}
#
# When the server decides to proxy a request to a home server,
# the proxied request is first passed through the pre-proxy
# stage. This stage can re-write the request, or decide to
# cancel the proxy.
#
# Only a few modules currently have this method.
#
pre-proxy {
# attr_rewrite
# Uncomment the following line if you want to change attributes
# as defined in the preproxy_users file.
# files
# Uncomment the following line if you want to filter requests
# sent to remote servers based on the rules defined in the
# 'attrs.pre-proxy' file.
# attr_filter.pre-proxy
# If you want to have a log of packets proxied to a home
# server, un-comment the following line, and the
# 'detail pre_proxy_log' section, above.
# pre_proxy_log
}
#
# When the server receives a reply to a request it proxied
# to a home server, the request may be massaged here, in the
# post-proxy stage.
#
post-proxy {
# If you want to have a log of replies from a home server,
# un-comment the following line, and the 'detail post_proxy_log'
# section, above.
# post_proxy_log
# attr_rewrite
# Uncomment the following line if you want to filter replies from
# remote proxies based on the rules defined in the 'attrs' file.
# attr_filter.post-proxy
#
# If you are proxying LEAP, you MUST configure the EAP
# module, and you MUST list it here, in the post-proxy
# stage.
#
# You MUST also use the 'nostrip' option in the 'realm'
# configuration. Otherwise, the User-Name attribute
# in the proxied request will not match the user name
# hidden inside of the EAP packet, and the end server will
# reject the EAP request.
#
eap
#
# If the server tries to proxy a request and fails, then the
# request is processed through the modules in this section.
#
# The main use of this section is to permit robust proxying
# of accounting packets. The server can be configured to
# proxy accounting packets as part of normal processing.
# Then, if the home server goes down, accounting packets can
# be logged to a local "detail" file, for processing with
# radrelay. When the home server comes back up, radrelay
# will read the detail file, and send the packets to the
# home server.
#
# With this configuration, the server always responds to
# Accounting-Requests from the NAS, but only writes
# accounting packets to disk if the home server is down.
#
# Post-Proxy-Type Fail {
# detail
# }
}
} # inner-tunnel server block"
and my ldap config file
"# Lightweight Directory Access Protocol (LDAP)
#
# This module definition allows you to use LDAP for
# authorization and authentication.
#
# See raddb/sites-available/default for reference to the
# ldap module in the authorize and authenticate sections.
#
# However, LDAP can be used for authentication ONLY when the
# Access-Request packet contains a clear-text User-Password
# attribute. LDAP authentication will NOT work for any other
# authentication method.
#
# This means that LDAP servers don't understand EAP. If you
# force "Auth-Type = LDAP", and then send the server a
# request containing EAP authentication, then authentication
# WILL NOT WORK.
#
# The solution is to use the default configuration, which does
# work.
#
# Setting "Auth-Type = LDAP" is ALMOST ALWAYS WRONG. We
# really can't emphasize this enough.
#
ldap {
#
# Note that this needs to match the name in the LDAP
# server certificate, if you're using ldaps.
server = "192.168.2.2"
#identity = "cn=admin,ou=admins,o=missouri"
#password = GOLDFLOOR59!
basedn = "o=missouri"
filter = "(uid=%{Stripped-User-Name:-%{User-Name}})"
#base_filter = "(objectclass=radiusprofile)"
# How many connections to keep open to the LDAP server.
# This saves time over opening a new LDAP socket for
# every authentication request.
ldap_connections_number = 5
# seconds to wait for LDAP query to finish. default: 20
timeout = 4
# seconds LDAP server has to process the query (server-side
# time limit). default: 20
#
# LDAP_OPT_TIMELIMIT is set to this value.
timelimit = 3
#
# seconds to wait for response of the server. (network
# failures) default: 10
#
# LDAP_OPT_NETWORK_TIMEOUT is set to this value.
net_timeout = 1
#
# This subsection configures the tls related items
# that control how FreeRADIUS connects to an LDAP
# server. It contains all of the "tls_*" configuration
# entries used in older versions of FreeRADIUS. Those
# configuration entries can still be used, but we recommend
# using these.
#
tls {
# Set this to 'yes' to use TLS encrypted connections
# to the LDAP database by using the StartTLS extended
# operation.
#
# The StartTLS operation is supposed to be
# used with normal ldap connections instead of
# using ldaps (port 689) connections
start_tls = no
# cacertfile = /path/to/cacert.pem
# cacertdir = /path/to/ca/dir/
# certfile = /path/to/radius.crt
# keyfile = /path/to/radius.key
# randfile = /path/to/rnd
# Certificate Verification requirements. Can be:
# "never" (don't even bother trying)
# "allow" (try, but don't fail if the cerificate
# can't be verified)
# "demand" (fail if the certificate doesn't verify.)
#
# The default is "allow"
# require_cert = "allow"
}
# default_profile = "cn=radprofile,ou=wirelessusers,o=missouri"
# profile_attribute = "radiusProfileDn"
# access_attr = "dialupAccess"
# Mapping of RADIUS dictionary attributes to LDAP
# directory attributes.
dictionary_mapping = ${confdir}/ldap.attrmap
# Set password_attribute = nspmPassword to get the
# user's password from a Novell eDirectory
# backend. This will work ONLY IF FreeRADIUS has been
# built with the --with-edir configure option.
#
# See also the following links:
#
# http://www.novell.com/coolsolutions/appnote/16745.html
# https://secure-support.novell.com/KanisaPlatform/Publishing/558/3009668_f.SAL_Public.html
#
# Novell may require TLS encrypted sessions before returning
# the user's password.
#
# password_attribute = nspmPassword
# Un-comment the following to disable Novell
# eDirectory account policy check and intruder
# detection. This will work *only if* FreeRADIUS is
# configured to build with --with-edir option.
#
edir_account_policy_check = yes
#
# Group membership checking. Disabled by default.
#
# groupname_attribute = cn
# groupmembership_filter = "(|(&(objectClass=GroupOfNames)(member=%{control:Ldap-UserDn}))(&(objectClass=GroupOfUniqueNames)(uniquemember=%{control:Ldap-UserDn})))"
# groupmembership_attribute = radiusGroupName
# compare_check_items = yes
# do_xlat = yes
# access_attr_used_for_allow = yes
#
# By default, if the packet contains a User-Password,
# and no other module is configured to handle the
# authentication, the LDAP module sets itself to do
# LDAP bind for authentication.
#
# THIS WILL ONLY WORK FOR PAP AUTHENTICATION.
#
# THIS WILL NOT WORK FOR CHAP, MS-CHAP, or 802.1x (EAP).
#
# You can disable this behavior by setting the following
# configuration entry to "no".
#
# allowed values: {no, yes}
# set_auth_type = yes
# ldap_debug: debug flag for LDAP SDK
# (see OpenLDAP documentation). Set this to enable
# huge amounts of LDAP debugging on the screen.
# You should only use this if you are an LDAP expert.
#
# default: 0x0000 (no debugging messages)
# Example:(LDAP_DEBUG_FILTER+LDAP_DEBUG_CONNS)
#ldap_debug = 0x0028
}"
What did I do wrong when I try to log on to the wireless network it still shows the PEAP certficte but it still says "incorrect username or password"
>>> <tnt at kalik.net> 11/09/09 11:22 AM >>>
> Hello i'm trying to setup Freeradius to do wireless authcation when I try
> to connect I get my peap certficte then it says "incorrect username or
> password" below is the debug output
...
> server inner-tunnel {
> +- entering group authorize {...}
> ++[chap] returns noop
> ++[mschap] returns noop
> ++[unix] returns notfound
> ++[control] returns notfound
> [eap] EAP packet type response id 109 length 67
> [eap] No EAP Start, assuming it's an on-going EAP conversation
> ++[eap] returns updated
> ++[files] returns noop
> ++[expiration] returns noop
> ++[logintime] returns noop
> ++[pap] returns noop
> Found Auth-Type = EAP
> +- entering group authenticate {...}
> [eap] Request found, released from the list
> [eap] EAP/mschapv2
> [eap] processing type mschapv2
> [mschapv2] +- entering group MS-CHAP {...}
> [mschap] No Cleartext-Password configured. Cannot create LM-Password.
> [mschap] No Cleartext-Password configured. Cannot create NT-Password.
> [mschap] Told to do MS-CHAPv2 for ghorchem with NT-Password
> [mschap] FAILED: No NT/LM-Password. Cannot perform authentication.
> [mschap] FAILED: MS-CHAP2-Response is incorrect
> ++[mschap] returns reject
Where is your password? If it's in ldap, you haven't enabled ldap in
inner-tunnel virtual server.
Ivan Kalik
Kalik Informatika ISP
-
List info/subscribe/unsubscribe? See http://www.freeradius.org/list/users.html
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.freeradius.org/pipermail/freeradius-users/attachments/20091109/c2800401/attachment.html>
More information about the Freeradius-Users
mailing list