Help Needed !!! FreeRADIUS Integration with MS AD
pradyumna dash
neomatrixgem at gmail.com
Thu Jan 24 18:28:12 CET 2013
Hi,
Thanks for the suggestion.
The below setup is now working for me.
I. Users are getting authenticated from the AD server
II. I have configured the switch to send the accounting logs to TACACS and
its working
But am not able to see the value-attribute pair which i have passed, I can
login to the switch with the AD user account but am landing at the ">"
prompt and the priv showing "1", Where as i have passed the priv level "15"
, So not sure how to fix this.
PFA the configuration files.
Please help.
Regards,
/Neo
On Wed, Jan 23, 2013 at 12:00 AM, <A.L.M.Buxey at lboro.ac.uk> wrote:
> Hi,
>
> > Thanks I have now configured the freeradius and the Cisco switch is now
> getting authenticated against the AD user but I can't see the commands
> executed in the switch by this user in the radius account log.
>
> follow the cisco docs for configuring your device for RADIUS
> accounting.....and
> look up TACACS+
>
> alan
> -
> List info/subscribe/unsubscribe? See
> http://www.freeradius.org/list/users.html
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.freeradius.org/pipermail/freeradius-users/attachments/20130124/2051ee4c/attachment-0001.html>
-------------- next part --------------
client localhost {
ipaddr = 127.0.0.1
secret = radiuspassword
}
client router1 {
ipaddr = 192.168.0.1
secret = radiuspassword
}
-------------- next part --------------
ldap {
#Note that this needs to match the name in the LDAP
#Server certificate, if you.re usin ldaps.
server = "192.168.0.10"
identity = "cn=neo,cn=users,dc=example,dc=com"
password = password123#
basedn = "cn=users,dc=example,dc=com"
filter = "(&(sAMAccountName=%{Stripped-User-Name:-%{User-Name}}))"
# Group membership checking. Disabled by default.
groupname_attribute = cn
groupmembership_filter = "(|(&(objectClass=group)(member=%Ldap-UserDn}))(&(objectClass=top)(uniquemember=%{Ldap-UserDn})))"
groupmembership_attribute = memberOf
}
-------------- next part --------------
# -*- text -*-
##
## radiusd.conf -- FreeRADIUS server configuration file.
##
## http://www.freeradius.org/
## $Id$
##
######################################################################
#
# Read "man radiusd" before editing this file. See the section
# titled DEBUGGING. It outlines a method where you can quickly
# obtain the configuration you want, without running into
# trouble.
#
# Run the server in debugging mode, and READ the output.
#
# $ radiusd -X
#
# We cannot emphasize this point strongly enough. The vast
# majority of problems can be solved by carefully reading the
# debugging output, which includes warnings about common issues,
# and suggestions for how they may be fixed.
#
# There may be a lot of output, but look carefully for words like:
# "warning", "error", "reject", or "failure". The messages there
# will usually be enough to guide you to a solution.
#
# If you are going to ask a question on the mailing list, then
# explain what you are trying to do, and include the output from
# debugging mode (radiusd -X). Failure to do so means that all
# of the responses to your question will be people telling you
# to "post the output of radiusd -X".
######################################################################
#
# The location of other config files and logfiles are declared
# in this file.
#
# Also general configuration for modules can be done in this
# file, it is exported through the API to modules that ask for
# it.
#
# See "man radiusd.conf" for documentation on the format of this
# file. Note that the individual configuration items are NOT
# documented in that "man" page. They are only documented here,
# in the comments.
#
# As of 2.0.0, FreeRADIUS supports a simple processing language
# in the "authorize", "authenticate", "accounting", etc. sections.
# See "man unlang" for details.
#
prefix = /usr
exec_prefix = /usr
sysconfdir = /etc
localstatedir = /var
sbindir = /usr/sbin
logdir = ${localstatedir}/log/radius
raddbdir = ${sysconfdir}/raddb
radacctdir = ${logdir}/radacct
#
# name of the running server. See also the "-n" command-line option.
name = radiusd
# Location of config and logfiles.
confdir = ${raddbdir}
run_dir = ${localstatedir}/run/${name}
# Should likely be ${localstatedir}/lib/radiusd
db_dir = ${raddbdir}
#
# libdir: Where to find the rlm_* modules.
#
# This should be automatically set at configuration time.
#
# If the server builds and installs, but fails at execution time
# with an 'undefined symbol' error, then you can use the libdir
# directive to work around the problem.
#
# The cause is usually that a library has been installed on your
# system in a place where the dynamic linker CANNOT find it. When
# executing as root (or another user), your personal environment MAY
# be set up to allow the dynamic linker to find the library. When
# executing as a daemon, FreeRADIUS MAY NOT have the same
# personalized configuration.
#
# To work around the problem, find out which library contains that symbol,
# and add the directory containing that library to the end of 'libdir',
# with a colon separating the directory names. NO spaces are allowed.
#
# e.g. libdir = /usr/local/lib:/opt/package/lib
#
# You can also try setting the LD_LIBRARY_PATH environment variable
# in a script which starts the server.
#
# If that does not work, then you can re-configure and re-build the
# server to NOT use shared libraries, via:
#
# ./configure --disable-shared
# make
# make install
#
libdir = /usr/lib64/freeradius
# pidfile: Where to place the PID of the RADIUS server.
#
# The server may be signalled while it's running by using this
# file.
#
# This file is written when ONLY running in daemon mode.
#
# e.g.: kill -HUP `cat /var/run/radiusd/radiusd.pid`
#
pidfile = ${run_dir}/${name}.pid
# chroot: directory where the server does "chroot".
#
# The chroot is done very early in the process of starting the server.
# After the chroot has been performed it switches to the "user" listed
# below (which MUST be specified). If "group" is specified, it switchs
# to that group, too. Any other groups listed for the specified "user"
# in "/etc/group" are also added as part of this process.
#
# The current working directory (chdir / cd) is left *outside* of the
# chroot until all of the modules have been initialized. This allows
# the "raddb" directory to be left outside of the chroot. Once the
# modules have been initialized, it does a "chdir" to ${logdir}. This
# means that it should be impossible to break out of the chroot.
#
# If you are worried about security issues related to this use of chdir,
# then simply ensure that the "raddb" directory is inside of the chroot,
# end be sure to do "cd raddb" BEFORE starting the server.
#
# If the server is statically linked, then the only files that have
# to exist in the chroot are ${run_dir} and ${logdir}. If you do the
# "cd raddb" as discussed above, then the "raddb" directory has to be
# inside of the chroot directory, too.
#
#chroot = /path/to/chroot/directory
# user/group: The name (or #number) of the user/group to run radiusd as.
#
# If these are commented out, the server will run as the user/group
# that started it. In order to change to a different user/group, you
# MUST be root ( or have root privleges ) to start the server.
#
# We STRONGLY recommend that you run the server with as few permissions
# as possible. That is, if you're not using shadow passwords, the
# user and group items below should be set to radius'.
#
# NOTE that some kernels refuse to setgid(group) when the value of
# (unsigned)group is above 60000; don't use group nobody on these systems!
#
# On systems with shadow passwords, you might have to set 'group = shadow'
# for the server to be able to read the shadow password file. If you can
# authenticate users while in debug mode, but not in daemon mode, it may be
# that the debugging mode server is running as a user that can read the
# shadow info, and the user listed below can not.
#
# The server will also try to use "initgroups" to read /etc/groups.
# It will join all groups where "user" is a member. This can allow
# for some finer-grained access controls.
#
user = radiusd
group = radiusd
# max_request_time: The maximum time (in seconds) to handle a request.
#
# Requests which take more time than this to process may be killed, and
# a REJECT message is returned.
#
# WARNING: If you notice that requests take a long time to be handled,
# then this MAY INDICATE a bug in the server, in one of the modules
# used to handle a request, OR in your local configuration.
#
# This problem is most often seen when using an SQL database. If it takes
# more than a second or two to receive an answer from the SQL database,
# then it probably means that you haven't indexed the database. See your
# SQL server documentation for more information.
#
# Useful range of values: 5 to 120
#
max_request_time = 30
# cleanup_delay: The time to wait (in seconds) before cleaning up
# a reply which was sent to the NAS.
#
# The RADIUS request is normally cached internally for a short period
# of time, after the reply is sent to the NAS. The reply packet may be
# lost in the network, and the NAS will not see it. The NAS will then
# re-send the request, and the server will respond quickly with the
# cached reply.
#
# If this value is set too low, then duplicate requests from the NAS
# MAY NOT be detected, and will instead be handled as seperate requests.
#
# If this value is set too high, then the server will cache too many
# requests, and some new requests may get blocked. (See 'max_requests'.)
#
# Useful range of values: 2 to 10
#
cleanup_delay = 5
# max_requests: The maximum number of requests which the server keeps
# track of. This should be 256 multiplied by the number of clients.
# e.g. With 4 clients, this number should be 1024.
#
# If this number is too low, then when the server becomes busy,
# it will not respond to any new requests, until the 'cleanup_delay'
# time has passed, and it has removed the old requests.
#
# If this number is set too high, then the server will use a bit more
# memory for no real benefit.
#
# If you aren't sure what it should be set to, it's better to set it
# too high than too low. Setting it to 1000 per client is probably
# the highest it should be.
#
# Useful range of values: 256 to infinity
#
max_requests = 1024
# listen: Make the server listen on a particular IP address, and send
# replies out from that address. This directive is most useful for
# hosts with multiple IP addresses on one interface.
#
# If you want the server to listen on additional addresses, or on
# additionnal ports, you can use multiple "listen" sections.
#
# Each section make the server listen for only one type of packet,
# therefore authentication and accounting have to be configured in
# different sections.
#
# The server ignore all "listen" section if you are using '-i' and '-p'
# on the command line.
#
listen {
# Type of packets to listen for.
# Allowed values are:
# auth listen for authentication packets
# acct listen for accounting packets
# proxy IP to use for sending proxied packets
# detail Read from the detail file. For examples, see
# raddb/sites-available/copy-acct-to-home-server
# status listen for Status-Server packets. For examples,
# see raddb/sites-available/status
# coa listen for CoA-Request and Disconnect-Request
# packets. For examples, see the file
# raddb/sites-available/coa-server
#
type = auth
# Note: "type = proxy" lets you control the source IP used for
# proxying packets, with some limitations:
#
# * A proxy listener CANNOT be used in a virtual server section.
# * You should probably set "port = 0".
# * Any "clients" configuration will be ignored.
#
# See also proxy.conf, and the "src_ipaddr" configuration entry
# in the sample "home_server" section. When you specify the
# source IP address for packets sent to a home server, the
# proxy listeners are automatically created.
# IP address on which to listen.
# Allowed values are:
# dotted quad (1.2.3.4)
# hostname (radius.example.com)
# wildcard (*)
ipaddr = 192.168.0.5
# OR, you can use an IPv6 address, but not both
# at the same time.
# ipv6addr = :: # any. ::1 == localhost
# Port on which to listen.
# Allowed values are:
# integer port number (1812)
# 0 means "use /etc/services for the proper port"
port = 0
# Some systems support binding to an interface, in addition
# to the IP address. This feature isn't strictly necessary,
# but for sites with many IP addresses on one interface,
# it's useful to say "listen on all addresses for eth0".
#
# If your system does not support this feature, you will
# get an error if you try to use it.
#
#interface = eth1
# Per-socket lists of clients. This is a very useful feature.
#
# The name here is a reference to a section elsewhere in
# radiusd.conf, or clients.conf. Having the name as
# a reference allows multiple sockets to use the same
# set of clients.
#
# If this configuration is used, then the global list of clients
# is IGNORED for this "listen" section. Take care configuring
# this feature, to ensure you don't accidentally disable a
# client you need.
#
# See clients.conf for the configuration of "per_socket_clients".
#
# clients = per_socket_clients
}
# This second "listen" section is for listening on the accounting
# port, too.
#
listen {
ipaddr = 192.168.0.5
# ipv6addr = ::
port = 0
type = acct
# interface = eth1
# clients = per_socket_clients
}
# hostname_lookups: Log the names of clients or just their IP addresses
# e.g., www.freeradius.org (on) or 206.47.27.232 (off).
#
# The default is 'off' because it would be overall better for the net
# if people had to knowingly turn this feature on, since enabling it
# means that each client request will result in AT LEAST one lookup
# request to the nameserver. Enabling hostname_lookups will also
# mean that your server may stop randomly for 30 seconds from time
# to time, if the DNS requests take too long.
#
# Turning hostname lookups off also means that the server won't block
# for 30 seconds, if it sees an IP address which has no name associated
# with it.
#
# allowed values: {no, yes}
#
hostname_lookups = no
# Core dumps are a bad thing. This should only be set to 'yes'
# if you're debugging a problem with the server.
#
# allowed values: {no, yes}
#
allow_core_dumps = no
# Regular expressions
#
# These items are set at configure time. If they're set to "yes",
# then setting them to "no" turns off regular expression support.
#
# If they're set to "no" at configure time, then setting them to "yes"
# WILL NOT WORK. It will give you an error.
#
regular_expressions = yes
extended_expressions = yes
#
# Logging section. The various "log_*" configuration items
# will eventually be moved here.
#
log {
#
# Destination for log messages. This can be one of:
#
# files - log to "file", as defined below.
# syslog - to syslog (see also the "syslog_facility", below.
# stdout - standard output
# stderr - standard error.
#
# The command-line option "-X" over-rides this option, and forces
# logging to go to stdout.
#
destination = files
#
# The logging messages for the server are appended to the
# tail of this file if destination == "files"
#
# If the server is running in debugging mode, this file is
# NOT used.
#
file = ${logdir}/radius.log
#
# If this configuration parameter is set, then log messages for
# a *request* go to this file, rather than to radius.log.
#
# i.e. This is a log file per request, once the server has accepted
# the request as being from a valid client. Messages that are
# not associated with a request still go to radius.log.
#
# Not all log messages in the server core have been updated to use
# this new internal API. As a result, some messages will still
# go to radius.log. Please submit patches to fix this behavior.
#
# The file name is expanded dynamically. You should ONLY user
# server-side attributes for the filename (e.g. things you control).
# Using this feature MAY also slow down the server substantially,
# especially if you do thinks like SQL calls as part of the
# expansion of the filename.
#
# The name of the log file should use attributes that don't change
# over the lifetime of a request, such as User-Name,
# Virtual-Server or Packet-Src-IP-Address. Otherwise, the log
# messages will be distributed over multiple files.
#
# Logging can be enabled for an individual request by a special
# dynamic expansion macro: %{debug: 1}, where the debug level
# for this request is set to '1' (or 2, 3, etc.). e.g.
#
# ...
# update control {
# Tmp-String-0 = "%{debug:1}"
# }
# ...
#
# The attribute that the value is assigned to is unimportant,
# and should be a "throw-away" attribute with no side effects.
#
#requests = ${logdir}/radiusd-%{%{Virtual-Server}:-DEFAULT}-%Y%m%d.log
#
# Which syslog facility to use, if ${destination} == "syslog"
#
# The exact values permitted here are OS-dependent. You probably
# don't want to change this.
#
syslog_facility = daemon
# Log the full User-Name attribute, as it was found in the request.
#
# allowed values: {no, yes}
#
stripped_names = no
# Log authentication requests to the log file.
#
# allowed values: {no, yes}
#
auth = no
# Log passwords with the authentication requests.
# auth_badpass - logs password if it's rejected
# auth_goodpass - logs password if it's correct
#
# allowed values: {no, yes}
#
auth_badpass = no
auth_goodpass = no
# Log additional text at the end of the "Login OK" messages.
# for these to work, the "auth" and "auth_goopass" or "auth_badpass"
# configurations above have to be set to "yes".
#
# The strings below are dynamically expanded, which means that
# you can put anything you want in them. However, note that
# this expansion can be slow, and can negatively impact server
# performance.
#
# msg_goodpass = ""
# msg_badpass = ""
}
# The program to execute to do concurrency checks.
checkrad = ${sbindir}/checkrad
# SECURITY CONFIGURATION
#
# There may be multiple methods of attacking on the server. This
# section holds the configuration items which minimize the impact
# of those attacks
#
security {
#
# max_attributes: The maximum number of attributes
# permitted in a RADIUS packet. Packets which have MORE
# than this number of attributes in them will be dropped.
#
# If this number is set too low, then no RADIUS packets
# will be accepted.
#
# If this number is set too high, then an attacker may be
# able to send a small number of packets which will cause
# the server to use all available memory on the machine.
#
# Setting this number to 0 means "allow any number of attributes"
max_attributes = 200
#
# reject_delay: When sending an Access-Reject, it can be
# delayed for a few seconds. This may help slow down a DoS
# attack. It also helps to slow down people trying to brute-force
# crack a users password.
#
# Setting this number to 0 means "send rejects immediately"
#
# If this number is set higher than 'cleanup_delay', then the
# rejects will be sent at 'cleanup_delay' time, when the request
# is deleted from the internal cache of requests.
#
# Useful ranges: 1 to 5
reject_delay = 1
#
# status_server: Whether or not the server will respond
# to Status-Server requests.
#
# When sent a Status-Server message, the server responds with
# an Access-Accept or Accounting-Response packet.
#
# This is mainly useful for administrators who want to "ping"
# the server, without adding test users, or creating fake
# accounting packets.
#
# It's also useful when a NAS marks a RADIUS server "dead".
# The NAS can periodically "ping" the server with a Status-Server
# packet. If the server responds, it must be alive, and the
# NAS can start using it for real requests.
#
# See also raddb/sites-available/status
#
status_server = yes
}
# PROXY CONFIGURATION
#
# proxy_requests: Turns proxying of RADIUS requests on or off.
#
# The server has proxying turned on by default. If your system is NOT
# set up to proxy requests to another server, then you can turn proxying
# off here. This will save a small amount of resources on the server.
#
# If you have proxying turned off, and your configuration files say
# to proxy a request, then an error message will be logged.
#
# To disable proxying, change the "yes" to "no", and comment the
# $INCLUDE line.
#
# allowed values: {no, yes}
#
proxy_requests = yes
$INCLUDE proxy.conf
# CLIENTS CONFIGURATION
#
# Client configuration is defined in "clients.conf".
#
# The 'clients.conf' file contains all of the information from the old
# 'clients' and 'naslist' configuration files. We recommend that you
# do NOT use 'client's or 'naslist', although they are still
# supported.
#
# Anything listed in 'clients.conf' will take precedence over the
# information from the old-style configuration files.
#
$INCLUDE clients.conf
# THREAD POOL CONFIGURATION
#
# The thread pool is a long-lived group of threads which
# take turns (round-robin) handling any incoming requests.
#
# You probably want to have a few spare threads around,
# so that high-load situations can be handled immediately. If you
# don't have any spare threads, then the request handling will
# be delayed while a new thread is created, and added to the pool.
#
# You probably don't want too many spare threads around,
# otherwise they'll be sitting there taking up resources, and
# not doing anything productive.
#
# The numbers given below should be adequate for most situations.
#
thread pool {
# Number of servers to start initially --- should be a reasonable
# ballpark figure.
start_servers = 5
# Limit on the total number of servers running.
#
# If this limit is ever reached, clients will be LOCKED OUT, so it
# should NOT BE SET TOO LOW. It is intended mainly as a brake to
# keep a runaway server from taking the system with it as it spirals
# down...
#
# You may find that the server is regularly reaching the
# 'max_servers' number of threads, and that increasing
# 'max_servers' doesn't seem to make much difference.
#
# If this is the case, then the problem is MOST LIKELY that
# your back-end databases are taking too long to respond, and
# are preventing the server from responding in a timely manner.
#
# The solution is NOT do keep increasing the 'max_servers'
# value, but instead to fix the underlying cause of the
# problem: slow database, or 'hostname_lookups=yes'.
#
# For more information, see 'max_request_time', above.
#
max_servers = 32
# Server-pool size regulation. Rather than making you guess
# how many servers you need, FreeRADIUS dynamically adapts to
# the load it sees, that is, it tries to maintain enough
# servers to handle the current load, plus a few spare
# servers to handle transient load spikes.
#
# It does this by periodically checking how many servers are
# waiting for a request. If there are fewer than
# min_spare_servers, it creates a new spare. If there are
# more than max_spare_servers, some of the spares die off.
# The default values are probably OK for most sites.
#
min_spare_servers = 3
max_spare_servers = 10
# There may be memory leaks or resource allocation problems with
# the server. If so, set this value to 300 or so, so that the
# resources will be cleaned up periodically.
#
# This should only be necessary if there are serious bugs in the
# server which have not yet been fixed.
#
# '0' is a special value meaning 'infinity', or 'the servers never
# exit'
max_requests_per_server = 0
}
# MODULE CONFIGURATION
#
# The names and configuration of each module is located in this section.
#
# After the modules are defined here, they may be referred to by name,
# in other sections of this configuration file.
#
modules {
#
# Each module has a configuration as follows:
#
# name [ instance ] {
# config_item = value
# ...
# }
#
# The 'name' is used to load the 'rlm_name' library
# which implements the functionality of the module.
#
# The 'instance' is optional. To have two different instances
# of a module, it first must be referred to by 'name'.
# The different copies of the module are then created by
# inventing two 'instance' names, e.g. 'instance1' and 'instance2'
#
# The instance names can then be used in later configuration
# INSTEAD of the original 'name'. See the 'radutmp' configuration
# for an example.
#
#
# As of 2.0.5, most of the module configurations are in a
# sub-directory. Files matching the regex /[a-zA-Z0-9_.]+/
# are loaded. The modules are initialized ONLY if they are
# referenced in a processing section, such as authorize,
# authenticate, accounting, pre/post-proxy, etc.
#
$INCLUDE ${confdir}/modules/
# Extensible Authentication Protocol
#
# For all EAP related authentications.
# Now in another file, because it is very large.
#
$INCLUDE eap.conf
# Include another file that has the SQL-related configuration.
# This is another file only because it tends to be big.
#
# $INCLUDE sql.conf
#
# This module is an SQL enabled version of the counter module.
#
# Rather than maintaining seperate (GDBM) databases of
# accounting info for each counter, this module uses the data
# stored in the raddacct table by the sql modules. This
# module NEVER does any database INSERTs or UPDATEs. It is
# totally dependent on the SQL module to process Accounting
# packets.
#
# $INCLUDE sql/mysql/counter.conf
#
# IP addresses managed in an SQL table.
#
# $INCLUDE sqlippool.conf
}
# Instantiation
#
# This section orders the loading of the modules. Modules
# listed here will get loaded BEFORE the later sections like
# authorize, authenticate, etc. get examined.
#
# This section is not strictly needed. When a section like
# authorize refers to a module, it's automatically loaded and
# initialized. However, some modules may not be listed in any
# of the following sections, so they can be listed here.
#
# Also, listing modules here ensures that you have control over
# the order in which they are initalized. If one module needs
# something defined by another module, you can list them in order
# here, and ensure that the configuration will be OK.
#
instantiate {
#
# Allows the execution of external scripts.
# The entire command line (and output) must fit into 253 bytes.
#
# e.g. Framed-Pool = `%{exec:/bin/echo foo}`
exec
#
# The expression module doesn't do authorization,
# authentication, or accounting. It only does dynamic
# translation, of the form:
#
# Session-Timeout = `%{expr:2 + 3}`
#
# So the module needs to be instantiated, but CANNOT be
# listed in any other section. See 'doc/rlm_expr' for
# more information.
#
expr
#
# We add the counter module here so that it registers
# the check-name attribute before any module which sets
# it
# daily
expiration
logintime
# subsections here can be thought of as "virtual" modules.
#
# e.g. If you have two redundant SQL servers, and you want to
# use them in the authorize and accounting sections, you could
# place a "redundant" block in each section, containing the
# exact same text. Or, you could uncomment the following
# lines, and list "redundant_sql" in the authorize and
# accounting sections.
#
#redundant redundant_sql {
# sql1
# sql2
#}
}
######################################################################
#
# Policies that can be applied in multiple places are listed
# globally. That way, they can be defined once, and referred
# to multiple times.
#
######################################################################
$INCLUDE policy.conf
######################################################################
#
# Load virtual servers.
#
# This next $INCLUDE line loads files in the directory that
# match the regular expression: /[a-zA-Z0-9_.]+/
#
# It allows you to define new virtual servers simply by placing
# a file into the raddb/sites-enabled/ directory.
#
$INCLUDE sites-enabled/
######################################################################
#
# All of the other configuration sections like "authorize {}",
# "authenticate {}", "accounting {}", have been moved to the
# the file:
#
# raddb/sites-available/default
#
# This is the "default" virtual server that has the same
# configuration as in version 1.0.x and 1.1.x. The default
# installation enables this virtual server. You should
# edit it to create policies for your local site.
#
# For more documentation on virtual servers, see:
#
# raddb/sites-available/README
#
######################################################################
-------------- next part --------------
cisco Auth-Type := LDAP
Service-Type = Administrative-User,
cisco-avpair = "shell:priv-lvl=15"
More information about the Freeradius-Users
mailing list